JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :25/04/2024

BIBLIOGRAPHY

Title : Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study
Subject : Land Subsidence
Volume No. : 115
Issue No. : 
Author : Liming Jiang, Hui Lin, Jianwei Ma, Bing Kong, Yao Wang
Printed Year : 2011
No of Pages  : 12: 257–268
Description : 

Uncontrolled coal fires can result in massive surface displacements due to the change in volume of burning coal and thermal effects in the adjacent rock mass; simultaneously, the resultant surface breakings provide greater access to air and water that in turn can aggravate the problem of underground coal seam burning. In this case study, we have investigated the feasibility and potential of detecting the land subsidence accompanying coal fires by means of satellite InSAR observations. Three groups of small-baseline InSAR approaches (PSI, stacking and 2-passDInSAR) were applied to the Wuda coalfield (Northern China) to reveal the spatial and temporal signals of the land subsidence in the areas affected by the coal fires. The interferometric results agree well with GPS observations and coal fire data obtained by field investigation, which demonstrates that the small-baseline InSAR techniques have remarkable potential to detect this land subsidence of interest. In particular, our results show that the development of coal fires can lead to new subsiding areas and also accelerate the ongoing surface subsidence, typically within the areas of mature coal fires, through a comparison of the interferometric observations and the multi-temporal coal fire maps. This timely and reliable information on land subsidence will be useful for the detection and mapping of the coal fire affected regions and thereby assist in fighting and controlling coal seam burning.

 

Read The Complete Paper: CLICK HERE