JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :25/04/2024

BIBLIOGRAPHY

Title : Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea
Subject : Acid Mine Drainage
Volume No. : 16
Issue No. : 
Author : Ju-Yong Kim, Hyo-Taek Chon
Printed Year : 2001
No of Pages  : 10: 1387–1396
Description : 

The purposes of this study are to (i) determine the geochemical characteristics of Imgok creek impacted by acid mine drainage (AMD) generated from abandoned coal mines, (ii) to assess the pollution of heavy metals in the stream sediments and soils, and (iii) to identify the chemical form of Fe precipitates collected in the study area where there are 4 abandoned coal mines, which belong to the Grangreung coal field at the eastern part of Korea. AMD generated from mine adits and coal refuse piles shows low pH, and high concentrations of Fe, Al and SO4, especially in the Youngdong coal mine. In Imgok creek, pH values increased, and total dissolved solids (TDS) values decreased with distance. The concentrations of toxic heavy metals and major cations except Fe decreased by dilution, but the concentration of Fe decreased rapidly due to the formation of precipitates. The quality of groundwater samples did not exceed the Korean drinking-water standard. In the stream sediments, the concentrations of Fe are relatively high in the Youngdong tributary and Imgok creek, but the concentrations of heavy metals are similar to those of unpolluted sediments. Pollution indices of agricultural soils range from 0.28 to 0.47. Yellowish red Fe precipitates collected in the study area turned out to be amorphous or poorly crystallized minerals (determined by X-ray diffraction patterns and Feox/Fetot ratios) and to contain chemically bonded SO4 and OH [determined by infra-red (IR) spectral analysis]. With these, the mol ratios of Fe/S ranging from 4.6 to 6.1 determined by electron probe micro-analysis (EPMA) in precipitates strongly support the existence of schwertmannite.

 

Read The Complete Paper: CLICK HERE