JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :04/04/2024

BIBLIOGRAPHY

Title : Partitioning of elements and macerals during preparation of Antaibao coal
Subject : Coal Geology
Volume No. : 68
Issue No. : 
Author : Wenfeng Wang, Yong Qin, Chongtao Wei, Zhuangfu Li, Yinghai Guo, Yanming Zhu
Printed Year : 2006
No of Pages  : 10: 223–232
Description : 

Analyses of the macerals, ash, sulfur and 43 major and trace elements were performed on samples of feed coal, cleaned coal, middlings and slime collected from the Antaibao coal preparation plant, China, and also on samples from coal preparation experiments. This study is focused on the partitioning of elements and macerals during coal preparation and potential environment aspects of the elements.

The conclusions are as follows: (1) in comparison with the feed coal, the cleaned coal has a higher vitrinite content and relatively lower inertinite and exinite contents, whereas the middlings and slime have lower vitrinite and exinite contents, and relatively higher inertinite contents. The vitrinite contents in the size-segregated cleaned coals were observed to show a slightly increasing tendency with increasing particle size, while the inertinite contents decreased. (2) Physical coal cleaning is not only effective for removal of ash and sulfur, but also in reducing the concentration of most elements. As, Cd, Co, Cs, Hg, Fe, K, Mg, Nb and Ni are observed to show a high degree of removal, while Br, Be, Cu, U, Mn, Zn and organic sulfur are enriched in the cleaned coal and show a lower degree of removal. The large-sized cleaned coal is cleaner than the smaller sized fractions. (3) The middlings, especially the slime, are enriched in S, Hg, Cr, V, Zn, etc., so that these fractions should not be directly used as fuel. In addition, the concentration of Pb and V in the process water exceeds the limit of relevant environmental water quality standard. Consequently, it is necessary to develop new processes to remove ash, sulfur and hazardous trace elements to the maximum extent. Further studies on deep processing of the middlings and slime and cleaning of the process water should also be performed.

 

Read The Complete Paper: CLICK HERE