JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :04/04/2024

BIBLIOGRAPHY

Title : METAL CONCENTRATIONS IN POREWATER OF THE LUSATIAN LIGNITE MINING SEDIMENTS AND INTERNAL METAL DISTRIBUTION IN JUNCUS BULBOSUS
Subject : Hydrogeology
Volume No. : 3
Issue No. : 
Author : ABAD CHABBI
Printed Year : 2003
No of Pages  : 13: 105–117
Description : 

The aim of this study was to determine a suite of four metals (Fe, Mn, Zn, Cu) in the sediment, porewater and a pioneer plant (Juncus bulbosus) of Lusatian lignite mining lakes in eastern Germany. An attempt was made to understand the factors which affect element concentrations in the above- and below-ground biomass of Juncus bulbosus in an extreme environment. Water samples, sediments, porewater and plant material collected from two different mining lakes dominated by Juncus bulbosus species were analyzed for their elemental content. Additionally, scanning electron microscopy (SEM) and an energy-dispersive X-ray (EDX) detector were used to follow the internal metal distribution in the roots of Juncus plant. Results showed that sediment and porewater element concentrations in the lakes decreased in the order Fe > Mn > Zn and Cu. All the four elements were higher in the roots than in above-ground tissues, suggesting that iron plaque induced on roots under anaerobic conditions served as a metal reservoir, but not as an ultimate mechanism to control metal concentrations in the above-ground tissues. SEM and EDX analyses revealed that the rhizodermis, exodermis and endodermis cells regulate the traffic of transition metals and therefore avoid excess levels that are toxic to the plant in acidic mining-impacted lake sediments.

 

Read The Complete Paper: CLICK HERE