JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :01/11/2024

BIBLIOGRAPHY

Title : Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: The impacts from large scale and artisanal mercury mining
Subject : Environmental Pollution
Volume No. : 42
Issue No. : 
Author : Ping Li, Xinbin Feng, Guangle Qiu, Lihai Shang, Shaofeng Wang
Printed Year : 2012
No of Pages  : 
Description : 

To evaluate the environmental impacts from large scale mercury mining (LSMM) and artisanal mercury mining (AMM), total mercury (THg) and methyl mercury (MeHg) were determined in mine waste, ambient air, stream water and soil samples collected from Wuchuan mercury (Hg) mining area, Guizhou, Southwestern China. Mine wastes from both LSMM and AMM contained high THg concentrations, which are important Hg contamination sources to the local environment. Total gaseous mercury (TGM) concentrations in the ambient air near AMM furnaces were highly elevated, which indicated that AMM retorting is a major source of Hg emission. THg concentrations in the stream water varied from 43 to 2100 ng/L, where the elevated values were mainly found in the vicinity of AMM and mine waste heaps of LSMM. Surface soils were seriously contaminated with Hg, and land using types and organic matter played an important role in accumulation and transportation of Hg in soil. The results indicated heavy Hg contaminations in the study area, which were resulted from both LSMM and AMM. The areas impacted by LSMM were concentrated in the historical mining and smelting facilities, while Hg pollution resulted from AMM can be distributed anywhere in the Hg mining area.

 

Read The Complete Paper: CLICK HERE