JavaScript must be enabled in order for you to use the Site in standard view. However, it seems JavaScript is either disabled or not supported by your browser. To use standard view, enable JavaScript by changing your browser options.

  • Bibliography
| Last Updated: :04/04/2024

BIBLIOGRAPHY

Title : Immobilization of toxic elements in mine residues derived from mining activities in the Iberian Pyrite Belt (SW Spain): Laboratory experiments
Subject : Acid Mine Drainage
Volume No. : 22
Issue No. : 
Author : Rafael Pe´rez-Lo´pez, Jose´ Miguel Nieto, Gabriel Ruiz de Almodo´var
Printed Year : 2007
No of Pages  : 17: 1919–1935
Description : 

In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Ca´diz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Ca´diz.

 

Read The Complete Paper: CLICK HERE